If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (9x3y2 + 5x2y2 + 7xy2) + (6x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: (7xy2 + 5x2y2 + 9x3y2) + (6x3y2 + -3x2y2 + -3xy2) = 0 Remove parenthesis around (7xy2 + 5x2y2 + 9x3y2) 7xy2 + 5x2y2 + 9x3y2 + (6x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: 7xy2 + 5x2y2 + 9x3y2 + (-3xy2 + -3x2y2 + 6x3y2) = 0 Remove parenthesis around (-3xy2 + -3x2y2 + 6x3y2) 7xy2 + 5x2y2 + 9x3y2 + -3xy2 + -3x2y2 + 6x3y2 = 0 Reorder the terms: 7xy2 + -3xy2 + 5x2y2 + -3x2y2 + 9x3y2 + 6x3y2 = 0 Combine like terms: 7xy2 + -3xy2 = 4xy2 4xy2 + 5x2y2 + -3x2y2 + 9x3y2 + 6x3y2 = 0 Combine like terms: 5x2y2 + -3x2y2 = 2x2y2 4xy2 + 2x2y2 + 9x3y2 + 6x3y2 = 0 Combine like terms: 9x3y2 + 6x3y2 = 15x3y2 4xy2 + 2x2y2 + 15x3y2 = 0 Solving 4xy2 + 2x2y2 + 15x3y2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), 'xy2'. xy2(4 + 2x + 15x2) = 0Subproblem 1
Set the factor 'xy2' equal to zero and attempt to solve: Simplifying xy2 = 0 Solving xy2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying xy2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(4 + 2x + 15x2)' equal to zero and attempt to solve: Simplifying 4 + 2x + 15x2 = 0 Solving 4 + 2x + 15x2 = 0 Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. 0.2666666667 + 0.1333333333x + x2 = 0 Move the constant term to the right: Add '-0.2666666667' to each side of the equation. 0.2666666667 + 0.1333333333x + -0.2666666667 + x2 = 0 + -0.2666666667 Reorder the terms: 0.2666666667 + -0.2666666667 + 0.1333333333x + x2 = 0 + -0.2666666667 Combine like terms: 0.2666666667 + -0.2666666667 = 0.0000000000 0.0000000000 + 0.1333333333x + x2 = 0 + -0.2666666667 0.1333333333x + x2 = 0 + -0.2666666667 Combine like terms: 0 + -0.2666666667 = -0.2666666667 0.1333333333x + x2 = -0.2666666667 The x term is 0.1333333333x. Take half its coefficient (0.06666666665). Square it (0.004444444442) and add it to both sides. Add '0.004444444442' to each side of the equation. 0.1333333333x + 0.004444444442 + x2 = -0.2666666667 + 0.004444444442 Reorder the terms: 0.004444444442 + 0.1333333333x + x2 = -0.2666666667 + 0.004444444442 Combine like terms: -0.2666666667 + 0.004444444442 = -0.262222222258 0.004444444442 + 0.1333333333x + x2 = -0.262222222258 Factor a perfect square on the left side: (x + 0.06666666665)(x + 0.06666666665) = -0.262222222258 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| x^2+6x=-11 | | 3=-.018x^2+.25x+.7 | | 9t^3=9t | | 5+26x+5x^2=0 | | 3.1=-.018x^2+.25x+.7 | | 16y=4x+5 | | 4=-.018x^2+.25x+.7 | | 4x^3-9x^2=-2x | | 2n+11=7-n | | .15x/3=31.05 | | .15*x/3=31.05 | | y-10.24=5.3 | | (x+2)(x-5)=(2x+1)(x-5) | | 7-(x-4)=3x+2(x+1) | | 49n^2=4 | | x^2-9x-38=-9 | | 5x-17=2x+16 | | 125=7s+34 | | 10x^2+52x+10=0 | | 4x+8=3x-13 | | 7(-x)=3x-50 | | 14x^4-28x^5=0 | | 10x-6=3x+36 | | (x+4)(x-6)=-21 | | 9a=7a+10 | | .15*31.05= | | w^2+36+12w=0 | | 3(t+2)=15 | | 5x=35+2(-x) | | -(x+4)=2x+35 | | -w^2=36-12w | | 3n+1=-n+4 |